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serve between the orthorhombic a and b directions at 
temperatures up to 520 ° C. In effect this means that  
the 'pseudo-tetragonal' unit cell retains a small but 
constant shear about its b o axis, producing a slight 
departure of the monoclinic fl angle from 90 °. 

Above 520 ° C. increased thermal motion permits 
movement of the displaced ions into sites more typical 
of the simple lattice possessing an unmodified unit cell. 
I t  is probable that  the observed dilatation of the 
crystal lattice in the c o direction and the removal of the 

residual shear distortion mentioned above accompanies 
or perhaps precedes this process. 
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The intensity of X-ray scattering from a crystal containing defects is shown to depend in a simple 
way on the Fourier transforms of the defects considered separately. An example of the application 
of the theory is worked out. 

1. Introduction 

General theories of the coherent scattering of X-rays 
by a crystal which is disordered or contains imper- 
fections have been given by Zachariasen (1945), and 
by Matsubara (1952). The effects of imperfections of 
a particular kind have often been calculated, for 
example for ' impuri ty '  atoms (Huang, 1947) and for 
screw dislocations (Wilson, 1952). The general theory 
given here has the same starting-point as that  of 
Matsubara, but is developed in a different way. The 
results are equivalent to those of Zachariasen, but are 
more easily applied to particular problems, as is shown 
by some examples. 

2. General  theory 

We consider a spherical crystal of radius ~ ,  containing 
N units cells. If we denote the crystal by C, and its 
Fourier transform by T c, then 

Tv(S ) = TL(S)F(H).  (2.1) 

S is a vector in reciprocal space, H a vector to a point 
of the reciprocal lattice. TL(S) is the transform of a 
lattice bounded by a sphere, and, as is well known, 
it has an appreciable value only within about ~ -1  of 
S = H. The transform of the contents of one unit cell, 
F(S), which varies comparatively slowly with S, has 
therefore been replaced in (2.1) by the structure factor 
F(H). 

We now imagine a defect A to be introduced into 
the crystal to produce an imperfect crystal C+A. 

This defect will in general be an assemblage of both 
positive and negative atoms--negative at points from 
which atoms have been displaced, positive at points 
to which they have been displaced. We thus have 

Tc+~(S) = T c ( S ) + T ~ ( S ) .  (2.2) 

The transform of the defect, Ta(S), will be given by 

T~(S) = ~7 ~" (fm, L exp [2~i(R~+r~,L) • S] 
L m 

-fro exp [2zi(RL+rm)" S]). (2.3) 

In this expression, the outer sum is over all unit cells 
and the inner over all atoms in one unit cell. RL 
locates a particular unit cell in the crystal, and r~,L 
a particular atom in that  unit cell. The defect is taken 
to consist of the replacement of atoms of scattering 
factor f at R + r  by others of scattering factor f '  at 
R'+r' .  

We next introduce F ~  (H), the structure factor of 
the average unit cell of C+A. Thus 

1 
F~(H)  = ~ L ~ ~ f~n,L exp [2:ri(r~,L) • S] .  (2.4) 

From (2.3) and (2.4) it follows that  

T~(H)--  N ( F ~ ( H ) - F ( H ) ) .  (2-5) 

Next we define 

TM(S ) ---- TL(S)FM(H); (2"6) 

T M is thus the transform of a crystal of radius ~ ,  
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composed of identical average unit cells. Combining 
(2.2), (2.5) and (2-6): 

Tc+~(S) = TM(S)+{T~(S)- (1/N)Tz(S)T~(H)} .  (2.7) 

When the first term on the right is large, the second is 
zero, and conversely. The intensity from the defective 
crystal (apart from constant factors) is thus 

]Tc+A(S)]  2 

--]T~(S)]2+[{TA(S)-(1/N)TL(S)T,~(H)}] 2. (2.8) 

The first term on the right is the Laue-Bragg intensity 

J l (S)  = ITs(S)] ~ • (2.9) 

The second must represent the diffuse intensity 

J2(S) = ](T.~(S)-(1/SI)TL(S)TA(H)}] 2 . (2.10) 

Except within about ~ - 1  of S = H, we have 

J~(S)- - ]T~(S)[  ~ . (2.10a) 

Equation (2.9) expresses a well known result. Equat ion 
(2.10), while no doubt equivalent to Zachariasen's 
(1945) result, is in a form which is suitable for detailed 
calculation in particular cases. Equation (2.10a) is 
accurate for all practical purposes, and expresses a 
result which might have been anticipated, namely tha t  
the diffuse intensity depends on the transform of the 
difference between the imperfect and perfect crystals. 
We note from (2-10) tha t  J ~ ( H ) - - 0 ,  in agreement 
with Zachariasen's conclusion tha t  there is no diffuse 
intensity exactly at reciprocal-lattice points. 

The change in Laue-Bragg intensity can also be 
expressed in terms of T~(S). A short calculation 
gives the fractional change of intensity in going from 
C to C+A as 

IF~(H)[~- ]F(H)I ~ 

IF(H)] 2 

1 /T~(H) T ~ ( H ) \  1 /[T~(H)]\ ~ (2.11) 

(The second term will be neglected in subsequent use 
of this result.) I t  is worth noting tha t  (2.11) gives the 
change in height of the Laue-Bragg maxima. One can 
no longer define integrated intensity precisely, since 
Laue-Bragg and diffuse intensity cannot be separated 
from one another. 

In almost all instances it will be the case tha t  A 
can be regarded as arising from the simultaneous 
presence of a large number of relatively small defects, 
which may or may not be identical, but are in any 
case centred on different points in the crystal. If each 
atom in the crystal is affected by no more than one 
defect, we can take 

A = ~ ~j, (2.12) 
j= l  

where each ~j is a defect centred in the crystal at  a 
point Ri, so tha t  

T~(S) = ~ T~i(S) exp [2~iRi • S ] ,  (2.13) 
1=1 

and therefore 

Ta(H) = ~ T~/(H). (2.14) 
i=1 

Equations (2.12), (2.13) and (2.14) thus apply exactly, 
no matter  how large the displacement of atoms around 
a defect may  be, provided tha t  the influence of a 
defect is limited in range, and the concentration of 
defects small. If the defects consist only in the re- 
placement of atoms, without displacement, the results 
apply without any restriction. In the more interesting 
eases which occur in practice, however, no upper 
limit can be set to the range of influence of a defect, 
as is shown by the expansion (or contraction) of the 
lattice in proportion with the defect concentration. 
Each atom must be imagined to be influenced by  
each defect ~j in the crystal. In such eases equation 
(2.12) is true as an approximation, as we now proceed 
to show. 

I t  is necessary to assume tha t  the effects produced 
combine linearly, i.e. the net displacement of any atom 
is the sum of the displacements tha t  would be produced 
by each defect ~j acting alone, and tha t  the same is 
true for the net expansion of the lattice. Consider the 
contribution Qj of a single atom to T~i. I t  is given by 

t~j = ( - 1  +exp [2~i(ej--TIi) • S ] ) f .  (2.15) 

Ei is the actual displacement of the atom from the 
position occupied in C. However, we now take as our 
reference crystal not C, but a perfect crystal expanded 
to have the same lattice as the mean lattice of C+5# 
The movement of the lattice point nearest to the atom 
in question, resulting from this expansion, is taken to 
be ~j. Equation (2.15) then follows. The contribution, 
t~, of this atom to T~ will be 

t~ = ( - l  +exp [2xd{j~=l(ei-Tli)}. S]) f . (2.16) 

Clearly we must now take as our reference crystal a 
perfect crystal expanded to have the same lattice as 

the mean lattice of C+A.  Even then, t~ 4= ~ t ~ j  
j=l 

unless the net displacement of the atoms from the 
mean lattice is at every stage small enough for the 
approximation 

t~i = 2~i(ei-rl i  ) • S (2-15a, cf. 2-15) 

to apply. When this is true, a slight extension of the 
above argument shows that  (2.12), (2-13) and (2.14) 
still apply as approximations which hold if the atomic 
displacements from the mean lattice are small. In  
what follows we assume this to be true. 
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Returning now to equation (2.14), we substi tute 
the value of Tz(H) given there in (2.11), and obtain 
for the fractional change in Laue-Bragg intensity 

1 i=1 i=1 
N F(H)  + F*(H) " 

(2.17) 

If all the defects are the same, this is simply 

n ~ To (H) T~* (H) 
( F ( H )  + ~ ~ " 

(2.17a) 

In  working out the diffuse intensity, we consider for 
simplicity of explanation the case where the defects 

are the same. From (2.10a), using (2.13) in the form 

n 
Ta(S) = T0(S) ~ exp [2niRi • S ] ,  

i=1  
we have 

J~(S) -- IT0(S)l ~ n +  ~ cos 2 z ( R i - R i )  • S 
/ i.1=~ 

i# j  

(2.18) 

The average value of the expression in brackets is n. 
The second term will cause the actual value to fluc- 
tuate between zero and a few times n. If the points 
Rj are distributed completely at  random throughout 
the crystal, such fluctuations will occur over distances 
of the order ~-1 ,  and would in practice be quite 
unobservable. We therefore have the simple result 

J 2 ( S )  = n]T~(S)I 2 . (2.19) 

When the defects dij are not all the same, a similar 
argument shows that ,  under the same conditions of 
random distribution of defects, 

J~(S) = ~ IT0j(S)I 2 . (2.20) 
i=1 

3. An example  of the application of the theory 

This problem has already been solved by Huang (1947). 
Each defect (~ consists in the replacement of an atom of 
scattering factor f l  by another of scattering factor f9 
in a crystal of, for example, copper. Surrounding atoms 
at  r are taken to be displaced by cr/r z. Referring the 
face-centred cubic crystal, of cubic cell dimension a, 
to a primitive trigonal unit  cell, we have 

+cos 2~Rz" S(1 +c/RaL)) } ,  

T0(H) = A - f l - 2 f l  ~, sin ~ ( ( c z / R ~ ) R L  " H).  
L 

(3.1) 

(3.2) 

Since c is relatively small, the factor inside the sum- 
mation can be replaced by ((cg/R~)RL" H) 2. From a 
result given by  Born & Misra (1940), which is also 
used by Huang, it then follows tha t  

4.22~r2c2H 9- 
T0(H) = (f~-f~)-f~ (½a) 4 (3"3) 

We then have 

T~(H) = n{  ( f 2 - f l ) - f l  

and F(H) = fl.  

4.2292cgH 2 
(½a) ~ } (3"4) 

The fractional change of Laue-Bragg intensity is 
then given by (2.17a) as 

2n ~ [ 5 _  1~ 4"227r2c2H~ } 
~-  [ \ f l  ] -  (½a) 4 . (3.5) 

Apart  from terms involving (n/N) 2, this result is the 
same as t h a t  given by Huang. 

To calculate the diffuse intensity, we return to 
equation (3.1), which may  be written as 

T0(S) = f 2 - f l  +11 2 {-½((2:~c/R~)RL" S) 2 cos 2uRL" S 
L 

-((2~c/R~)RL. S) sin 2:~RL • S}.  (3.6) 

To a first approximation, the term in c2/R6L can be 
neglected compared with tha t  in c/R~, giving 

T0(S) = f 2 - f l - A  .Z ((2:~c/R~)RL. S) sin 2~ZRL • S .  
L (3.6a) 

Now, by a well known result in Fourier theory, the 
sum over all lattice points in (3.6a) can be replaced 
by the integral 

2~c - l ~  r .  S sin 2:~r • SdVr (3.7) I ( S )  = T ,% r 3 

on the understanding tha t  I(S) is to be set down with 
origin at  each point of the reciprocal lattice (see 
Ekstein, 1945). v is the volume of the primitive unit 
cell, tha t  is v = ¼a a. The lower limit of the integral is 
r 0 > 0 since the atom at RL = 0 is not displaced. 
The integral I(S) can be evaluated directly, and the 
final result is 

4~zc 
T0(S) = f ~ - f l - S f l  ~ vIS_H------- ~ cos (S, S - H )  

{ sin 2~rro[S-H , sin 2 ~ r ~ ] S - H [  } 
× 2Jrr0iS_Hl - 2 ~ r ~ ] S _ H  1 . (3'8) 

The value of r o has not yet  been specified, and in fact 
the value of (3.8) is independent of r 0 provided the 
lat ter  is just less than a/V2, the shortest interatomic 
distance. The series in (3.8) will converge most rapidly 
if r o is chosen to be as large as possible, and putt ing 
r o = a/~/2 we may approximate in the neighbourhood 
of a particular reciprocal-lattice point by retaining 
only the first term of the series to give 
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4r~cSf l 
T~(S) -- ( f~-f l )  - -  cos (S, S - H )  

v I S - H l  

{ sin V 2 - g a l S - H I  } 
× V2.uaIS_H] . (3.9) 

(The term sin 2 7 ~ ] S - H [ / 2 g ~ ] S - H [  in (3.8) need be 
considered only when IS -HI  _~ ~-1. )  

Our expression for the diffuse intensity near S = H 
is therefore 

r 4gCSf l 
J~(S) = n [ ( f~-f l )  v l S - H ~  cos (S, S - H )  

sin V 2 : g a I S - H ] ]  ~ 
× ~/2 .~aIS-H[  J " (3.10) 

This result is not identical with Huang's, which is 
not surprising in view of the approximations made in 
both cases. Both qualitatively and quantitatively, 
however, it gives results very close to those given by 
Huang's expression for J2(S), the main features being 
(a) an increase of diffuse intensity with $2; (b) a con- 
centration of diffuse intensity near S = H, falling off 
somewhat more rapidly than IS-HI-2 ;  (c) almost zero 
intensity in a plane passing through each reciprocal- 
lattice point, the normal to the plane being the direc- 
tion of H. 

4. Other  appl ica t ions  

Possible applications of the theory, to problems not 
already solved, which suggest themselves are: 

(i) The calculation of the diffuse intensity from 
neutron-irradiated crystals of, for example, boron 
carbide. I t  has been shown by Tucker & Senio (1955) 
tha t  the defect consists mainly in the removal of the 
central carbon atom of a chain of three, resulting in an 
inward movement, predominantly in the c direction, 
of surrounding atoms. On the basis of the above theory, 
the following qualitative predictions can be made 
about the distribution of diffuse intensity: 

(a) As this displacement of atoms presumably ex- 
tends over neighbouring unit cells, the diffuse intensity 
will be concentrated around reciprocal-lattice points. 

(b) If all the atoms in a neighbouring unit cell are 

affected in nearly the same way and to nearly the 
same extent, the diffuse intensity around a reciprocal- 
lattice point will be.nearly proportional to the Laue-  
Bragg intensity. 

(c) The diffuse intensity surrounding an (00/) reci- 
procal-lattice point will be particularly strong, but  
should fall to zero, or at  least to a low minimum, on a 
plane passing through the point (00/) with normal 
along c*. Other reciprocal-lattice points will show this 
feature to a lesser extent, (hkO) points should not show 
it at all. 

These predictions are made on the assumption tha t  
the displacement of atoms along c is the only defect 
present. However, the displaced carbon atom, and 
helium and lithium atoms produced by the reaction 
of boron atoms with bombarding neutrons, presumably 
occupy interstitial sites and thereby produce further 
displacements which complicate the picture. Con- 
clusions (a) and (b) should, however, remain valid, 
and the feature mentioned in (c) might not be com- 
pletely masked. Detailed calculation must await more 
precise knowledge of the nature of the defect. 

(ii) Calculation of the intensity of scattering from 
simple crystals containing Frenkel defects, tha t  is 
vacant sites plus interstitial atoms. Detailed calcula- 
tions are in progress, and it appears that  the effects 
to be expected are qualitatively similar to those 
discussed in § 3. 

This work may be regarded as an extension of work 
by P. B. Hirsch (unpublished) on the low-angle scat- 
tering of X-rays by defect structures. I am grateful to 
Dr Hirsch for allowing me to read his notes on the 
subject. 
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